1
PROBLEMAS RESUELTOS PRIMERA LEY DE LA TERMODINAMICA
CAPITULO 20 FISICA I
CUARTA, QUINTA, SEXTA Y SEPTIMA EDICION SERWAY
Raymond A. Serway
20.1 Calor y energía interna
20.2 Calor especifico y calorimetría
20.3 Calor latente
20.4 Trabajo y calor en procesos termodinámicos
Erving Quintero Gil
Ing. Electromecánico
Bucaramanga – Colombia
2010
Para cualquier inquietud o consulta escribir a:
Problema 1. En su luna de miel, James Joule viajó de Inglaterra a Suiza. Trató de verificar su idea de la
convertibilidad entre energía mecánica y energía interna al medir el aumento en temperatura del agua
que caía de una catarata. Si el agua de una catarata alpina tiene una temperatura de 10°C y luego cae
50 m (como las cataratas del Niágara) , ¿qué temperatura máxima podría esperar joule que hubiera en
el fondo de las cataratas?
Problema 2. Considere el aparato de joule descrito en la figura 20,1. La masa de cada uno de los dos
bloques es de 1.5 kg, y el tanque aislado se llena con 200 g de agua. ¿Cuál es el aumento de la
temperatura del agua después que los bloques caen una distancia de 3 m?
Sección 20.2 Calor específico y calorimetría
Problema 3. La temperatura de una barra de plata sube 10°C cuando absorbe 1.23 kj de energía por
calor. La masa de la barra es de 525 g. Determine el calor específico de la plata.
Problema 4. Una muestra de 50 gr de cobre está a 25°C. Si 200 j de energía se le agregan por calor,
¿cuál es la temperatura final del cobre?
2
Problema 5. El uso sistemático de energía solar puede dar un gran ahorro en el costo de calefacción de
espacios en invierno para una casa típica de la región norte central de Estados Unidos. Si la casa tiene
buen aislamiento, es posible modelarla como que pierde energía por calor de manera continua a razón
de 6000 W en un día de abril, cuando la temperatura promedio exterior es de 4°C, y cuando el sistema
de calefacción convencional no se usa en absoluto. El colector pasivo de energía solar puede estar
formado simplemente por ventanas muy grandes en una alcoba que mire hacia el sur. La luz solar que
brille durante el día es absorbida por el piso, paredes interiores y otros objetos del cuarto, elevándose
así su temperatura a 38°C. Cuando baja el sol, las cortinas o persianas aislantes se cierran sobre las
ventanas. Durante el periodo entre las 5:00 p.m. y las 7:00 a.m. la temperatura de la casa bajará, y se
necesita una "masa térmica" suficientemente grande para evitar que baje demasiado. La masa térmica
puede ser una gran cantidad de piedra (con calor específico de 850 ]/kg.
o
C) en el piso y las paredes
interiores expuestas a la luz solar. ¿Qué masa de piedra se necesita si la temperatura no debe
descender por abajo de 18°C durante la noche?
Problema 6. El láser Nova del Laboratorio Nacional Lawrence Livermore, en California, se usa en
estudios para iniciar una fusión nuclear controlada (sección 23.4 del volumen II). Puede entregar una
potencia de 1.60 X 10
13
W durante un intervalo de tiempo de 2.50 ns. Compare su energía de salida en
uno de estos intervalos con la energía necesaria para hacer que se caliente una olla de té de 0.8 kg de
agua de 20°C a 100°C.
Problema 7. Una herradura de hierro de 1.5 kg inicialmente a 600°C se deja caer en una cubeta que
contiene 20 kg de agua a 25°C. ¿Cuál es la temperatura final? (Pase por alto la capacidad calorífica del
recipiente, y suponga que la insignificante cantidad de agua se hierve.)
3
Problema 8. Una taza de aluminio de 200 gr de masa contiene 800 gr. de agua en equilibrio térmico a
80°C. La combinación de taza y agua se enfría uniformemente de modo que la temperatura desciende
en 1.5°C por minuto. ¿A qué ritmo se remueve energía por calor? Exprese su respuesta en watts.
Problema 9. Un calorímetro de aluminio con masa de 100 gr. contiene 250 gr. de agua. El calorímetro y
el agua están en equilibrio térmico a 10°C. Dos bloques metálicos se ponen en el agua. Uno es una
pieza de cobre de 50 gr. a 80°C. El otro bloque tiene una masa de 70 gr. y está originalmente a una
temperatura de 100°C. Todo el sistema se estabiliza a una temperatura final de 20°C. (a) Determine el
calor específico de la muestra desconocida. (b) Calcule el material desconocido, usando los datos de la
tabla 20.1.
Problema 10. Una moneda de cobre de 3 gr. a 25°C se deja caer 50 m al suelo. (a) Suponiendo que 60
% del cambio en energía potencial del sistema formado por el centavo y nuestro planeta se va a
4
aumentar la energía interna del centavo, determine su temperatura final. (b) ¿Qué pasaría si? ¿Este
resultado depende de la masa del centavo? Explique.
Problema 11. Una combinación de 0.25 kg de agua a 20°C, 0.4 kg de aluminio a 26°C, y 0.1 kg de
cobre a 100°C se mezclan en un recipiente aislado al que se deja llegar al equilibrio térmico. Soslaye
cualquier transferencia de energía hacia o desde el recipiente y determine la temperatura final de la
mezcla.
Problema 12. Si se vierte agua con una m
h
a una temperatura T
h
en una taza de aluminio de masa m
Al
que contiene una masa m
c
de agua a T
c
donde T
h
> T
c
¿cuál es la temperatura de equilibrio del sistema?
Problema 13. Un calentador de agua se opera con energía solar. Si el colector solar tiene un área de 6
m
2
y la intensidad entregada por la luz solar es de 550 W /m
2
, ¿cuánto tarda en aumentar la temperatura
de 1 m
3
de agua de 20°C a 60°C?
5
Problema 14. Dos recipientes térmicamente aislados están conectados por un estrecho tubo equipado
con una válvula que inicialmente está cerrada. Uno de los recipientes, de 16.8 L de volumen, contiene
oxígeno a una temperatura de 300 K y una presión de 1.75 atm. El otro, de 22.4 L de volumen, contiene
oxígeno a una temperatura de 450 K y una presión de 2.25 atm. Cuando la válvula se abre, los gases de
los dos recipientes se mezclan, y la temperatura y presión se hacen uniformes en todo el sistema. (a)
¿Cuál es la temperatura final? (b) ¿Cuál es la presión final?
Sección 20.3 Calor latente
6
Problema 15. ¿Cuánta energía se requiere para cambiar un cubo de hielo de 40 gr. de hielo a -10°C a
vapor a 110°C?
Problema 16. Un calorímetro de cobre de 50 gr. contiene 250 gr. de agua a 20°C. ¿Cuánto vapor debe
condensarse en el agua si la temperatura final del sistema debe llegar a 50°C?
Problema 17. Una bala de plomo de 3 gr. a 30°C es disparada a una rapidez de 240 m/s en un gran
bloque de hielo a 0°C, en el que queda incrustada. ¿Qué cantidad de hielo se derrite?
7
Problema 18. Vapor a 100°C se agrega a hielo a 0°C. (a) Encuentre la cantidad de hielo derretido y la
temperatura final cuando la masa del vapor sea 10 gr. y la masa del hielo sea 50 gr. (b) ¿Qué pasaría
si? Repita cuando la masa del vapor sea 1 gr. y la masa del hielo sea 50 gr.
Problema 19. Un bloque de 1 kg de cobre a 20°C se pone en un gran recipiente de nitrógeno líquido a
77.3 K. ¿Cuántos kilogramos de nitrógeno hierven para cuando el cobre llega a 77.3K? (El calor
específico del cobre es 0.092 cal/g.
o
C. El calor latente de vaporización del nitrógeno es 48 gal/g.)
8
Problema 20. Suponga que un granizo a o°C cae en aire a una temperatura uniforme de o°C y cae
sobre una banqueta que también está a esta temperatura. ¿De qué altura inicial debe caer el granizo
para que se derrita por completo al impacto?
Problema 21. En un recipiente aislado, 250 gr. de hielo a 0
0
C se agregan a 600 gr. de agua a 18°C. (a)
¿Cuál es la temperatura final del sistema? (b) ¿Cuánto hielo resta cuando el sistema llega al equilibrio?
22. Problema de repaso. Dos veloces balas de plomo, cada una de 5 gr. de masa y a una temperatura
de 20°C, chocan de frente a una rapidez de 500 m/s cada una. Si se supone una colisión perfectamente
inelástica y no hay pérdida de energía por calor a la atmósfera, describa el estado final del sistema
formado por las dos balas.
Sección 20.4 Trabajo y calor en procesos termodinámicos
9
Problema 23. Una muestra de gas ideal se expande al doble de su volumen original de 1 m
3
en un
proceso cuasiestático para el cual P = αV
2
, con α = 5 atm/m
6
, como se ve en la figura P20.23. ¿Cuánto
trabajo es realizado sobre el gas en expansión?
Problema 24. (a) Determine el trabajo realizado sobre un fluido que se expande de i a como se indica
en la figura P20.24. (b) ¿Qué pasaría si? ¿Cuánto trabajo es realizado sobre el fluido si se comprime de
a i a lo largo de la misma trayectoria?
10
Problema 25. Un gas ideal está encerrado en un cilindro con un émbolo movible sobre él. El émbolo
tiene una masa de 8000 gr. y un área de 5 cm
2
y está libre para subir y bajar, manteniendo constante la
presión del gas. ¿Cuánto trabajo se realiza sobre el gas cuando la temperatura de 0.2 mol del gas se
eleva de 20°C a 300°C?
Problema 26. Un gas ideal está encerrado en un cilindro que tiene un émbolo sobre él. El émbolo tiene
una masa m y un área A y está libre para subir y bajar, manteniendo constante la presión del gas.
¿Cuánto trabajo se realiza sobre el gas cuando la temperatura de n moles del gas se eleva de T
1
a T
2
?
Problema 27. Un mol de un gas ideal se calienta lentamente de modo que del estado PV (P
i
V
i
) a (3P
i
3
V
i
) en forma tal que la presión es directamente proporcional al volumen. (a) ¿Cuánto trabajo se realiza
sobre el gas en el proceso? (b) ¿Cómo está relacionada temperatura del gas con su volumen durante
este proceso?
Sección 20.5 Primera ley de la termodinámica
11
Problema 28. Un gas se comprime a una presión constante de 0.8 atm de 9 L a 2 L. En el proceso, 400
J de energía salen del gas por calor. (a) ¿Cuál es el trabajo realizado sobre el gas? (b) ¿Cuál el cambio
en su energía interna?
Problema 29. Un sistema termodinámico experimenta un proceso en el que energía interna disminuye
en 500J. Al mismo tiempo, 220 J de trabajo se realizan sobre el sistema. Encuentre la energía
transferida hacia o desde él por calor.
Problema 30. Un gas es llevado a través del proceso cíclico descrito en la figura P20.30. (a) Encuentre
la energía neta transferida al sistema por calor durante un ciclo completo. (b) ¿Qué pasaría si? Si el ciclo
se invierte, es decir, el proceso sigue la trayectoria ACBA, ¿cuál la energía neta de entrada por ciclo por
calor?
12
Problema 31. Considere el proceso cíclico descrito en la figura P20.30. Si Q negativo para el proceso
BC y E
int
es negativo para el proceso CA, ¿cuáles son los signos de Q, Wy E
int
que están asociados
con cada proceso?
Problema 32. Una muestra de un gas ideal pasa por el proceso que se muestra en la figura P20.32. De
A a B, el proceso es adiabático; de B a C es isobárico con 100 kJ de energía entrando al sistema por
calor. De C a D, el proceso es isotérmico; de D a A, es isobárico con 150 kJ de energía saliendo del
sistema por calor. Determine la Diferencia en energía interna E
intB
- E
intA
13
Problema 33. Una muestra de un gas ideal está en un cilindro vertical equipado con un émbolo. Cuando
5.79 kJ de energía se transfieren al gas por para elevar su temperatura, el peso sobre el émbolo se
ajusta de modo que el estado del gas cambia del punto A al punto B a lo largo del semicírculo que se
ilustra en la figura P20.33. Encuentre el cambio en energía interna del gas.
14
Sección 20.6 Algunas aplicaciones de la primera ley de la termodinámica
Problema 34. Un mol de un gas ideal realiza 3000 J de trabajo sobre su entor- cuando se expande de
manera isotérmica a una presión final 1.00 atril y volumen de 25.0 L. Determine (a) el volumen ini- y (b)
la temperatura del gas.
Problema 35. Un gas ideal inicialmente a 300 K experimenta una expansión bárica a 2.50 kPa. Si ei
volumen aumenta de 1.00 m3 a 3.00 m
3
12.5 k] se transfieren al gas por calor, ¿cuáles son (a) el cambio
I su energía interna y (b) su temperatura final?
15

Este documento contiene más páginas...

Descargar Completo
Cuarta Tarea. Termodinámica.pdf
browser_emoji Estamos procesando este archivo...
browser_emoji Lamentablemente la previsualización de este archivo no está disponible. De todas maneras puedes descargarlo y ver si te es útil.
Descargar
. . . . .